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Square cells in gravitational and capillary thermoconvection

V. Regnier* P. C. Dauby, P. Parmentier, and G. Lebon
Universitede Liege, Institut de Physique B5, Sart Tilman, B 4000geiel, Belgium
(Received 4 December 19p6

The onset of square convective cells in fluid layers heated from below is investigated. Amplitude equations
are deduced from the Boussinesq equations and a standard stability analysis is performed. Square cells are
shown to be preferred when the instability is mainly capillarity driven. The influence of the Prandtl and Biot
numbers are examined. At small Pr, the Biot number has not very much influence and squares are always
observed for thin enough layers. In large Prandtl number fluids, Bi must be larger than the limiting value 0.28
for squares to be stablES1063-651X%97)10405-6

PACS numbes): 47.20—k, 44.25:+f, 47.27.Te

[. INTRODUCTION coupled gravity- and capillarity-driven instability, with spe-
cial emphasis on the possibility of the occurrence of square
Pattern formation in thermoconvection has been the obstructures. Clearly, this model is better suited to interpret the
ject of a large amount of interest for many years and man)experiments of Nitschke and Thess, which were realized on
scientists have analyzed this problem. When a horizontdFarth. From a technical point of view, our approach comple-
fluid layer is heated from below, convection sets in after aments our previous analysis of rolls and hexagonal ¢2lL%
critical temperature difference between the bottom and thén Sec. II, the Landau amplitude equations for the roll mode,
top of the liquid has been reached. The motion that appeat§€ square structure, and the hexagonal cells is derived. In
above the threshold is generally well structured and a reguldhe next section, the stability of the solutions corresponding
pattern of convective cells may be observed. to the different planforms will be examined while the influ-
The geometrical nature of the convective cells that appeﬁnce of the Prandtl and Biot numbers is studied in Sec. IV.
above the threshold depends greatly on the mechanism th&tnal conclusions are drawn in the last section.
causes the instability: usually, rolls are observed in gravity-
driven convection while hexagonal cells are preferred when Il. LANDAU EQUATIONS FOR ROLLS, HEXAGONAL
the motion originates in capillary effects. We will not review CELLS, AND SQUARE CONVECTIVE PATTERNS
here all the papers on this subjddt—20 since the main

results were commented on by Parmentier, Regnier, Lebon, Th? procedure followed here to obtain the amplltudg
and Legrog21]. equations for the roll, hexagonal, and square structures is

similar to that used in our previous wofR1]. For this rea-

ments in which square convective cells were observed jFon, most of the technical .dEta_”S will be 0"."“9.0' in this
surface-tension-driven convection at a relative distance frorﬁ"ork; moreover, when notation is the same, it will not al-
threshold larger than about 2.35. A fast theoretical interpre‘—’vays be_ redefined. L o .

tation was proposed by Bestehd@8] for pure capillary(or The linear study of s.tablllty is not mod!fled with respect
Marangonj convection. Its study is based on direct numeri-0 the work of Parmentieet al. [21] and .W'" not be com-

cal simulation of the Navier-Stokes equations as well as Orr]nented upon any further here. The nonlinear approach to t_he
amplitude equations deduced from a model equation for con[-’_rObIem IS bas_ed on the_development of _the solution in
vection. Recently, Braga@4] deduced amplitude equations e!genmode series of the linear proble{_rmnmdered as an
from the complete field equations in the case of pure Ma_agenvalug problem for th_e growth fa?“w'th.‘he Marang_onl
rangoni instability and he showed that square patterns ar%nd_ Rayleigh numbers fixed at thelr_crltlcal vallew/ith
theoretically observable only if the Biot number at the upper1©rizontal dependence of the form exgx+ky)] for the

free surface is nonzero. Another recent paper by Golovin?'geandeS' the development is written as

Very recently, Nitschke and The$&2] reported experi-

Nepomnyashchy, and Pism¢R5] also considers the prob- Np—1
lem of square convective cells in a two layer liquid-gas sys- f= 2 E Ak K keK 1)
tem with a deformable interface but, like all the previous p=0 K o %’ ’

authors, they neglect gravity. The competition between
square planforms and hexagonal structures was also studi#eref denotes the unknown fields arsg the successive
from a theoretical point of view by Kubstrugt al.[26] who  eigenvalues. In order thet be real, the amplitudes must
used generalized Swift-Hohenberg equations. satisfy

The purpose of the present paper is to examine the _

K _ A—k
Asp_A% ’ (2)
*Electronic address: vregnier@ulg.ac.be where the overbar denotes the complex conjugate.
TAlso at Louvain University, Department of Mechanics, B 1348  The setK is made up oK, andKg, which contain, re-
Louvain-La-Neuve, Belgium. spectively, the critical eigenmodes taken into account and the
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k, Marangoni numbers defined, for instance,[21]; Ra. and
ks Kk, Ma, are the corresponding critical values that define the lin-
K ear instability threshold
3 -k, The equations foA_izAg—:i (with Sy;=0) are the com-

Kk, K, plex conjugates of the preceding set and are thus equivalent
to it.

Apart from the trivial conductive solutionA;=0), the
solutions corresponding to the different symmetries are

i Ai=Ag, Ajz1=0 (rolls), @

FIG. 1. Wave vectors for rolls, hexagons, and squares. A1:A2:A3:A§ , A;=A;=A;=0 (hexagony,
)
modes generated by the quadratic interactions of the ele- _
ments ofK.. To describe the interactions of rolls, square A1=A4=As, A;=0(1#]j#4) (squares  (6)

structure, and hexagonal cells, the Bgtconsists of the 12 . ,
vectors=k; (i=1,...,6) with an angle of 30° between them !N these expressions, the amplitudeg, Ay, and Ag for

and represented in Fig. 1. The corresponding elementarip!lS: hexagons, and squares, repectively, are given by
geometrical structures are 6 rolls with maximal vertical ve- c

locity at the origin making angles of 30° and 6 other rolls, A%:_, (7)
which are spatially out of phase by/2 (i.e., that are moved c

normally to themselves by half a roll width

When developmentl) is introduced in the Boussinesq Ai_ai Va®+4e(c+2b) ®
balance equations, the following Landau equations are ob- Ho 2(c+2b) '
tained for the six complex amplitudei,ﬁq=Al;i (with s5=0
di=1,...,6: ’ A2—_€ 9
an T S cte’ ©
r ﬂ=eAl+aA_2 As— b(|A,|2+ A3 A, —c|AL|2A, Note that(7) and(9) imply that supercritical rolls or squares
dt can be found only it>0 or c+e>e, respectively. In the
—d(|Ag|2+ |AglD) AL — el Al 2A, expression8) for the amplitude of the hexagonal cells, the
' signs “+” or “ —" can be seen to correspond, respectively,
to upflow or downflow at the center of the cells for positive
T%ZEA +aA. A, — b(|As|2+ | A2 Ay— | Al 2A a’s or the opposite for negativ&’s. It is worth noticing that
dt 29 3 e 2l T2 other solutions with the same symmetries are possible; these

can be obtained by rotating or translating the solutions given

— 2 2 _ 2
d(Ael*+[Ad Az~ el Agl A, by Egs.(4-6) and are thus equivalent to them.

. % — eAg+aA, Ag— bl(|Ay2+|Agl2) As—clAgl2As lIl. STABILITY ANALYSIS
To examine the stability of the different solutions, the
—d(JA4%+]As|)As—e|Ag?Ag, system(3) is first transformed into a set of 12 real equations
3 by taking the real and imaginary parts of each equation. Then
o a standard linear perturbation analysis is performed for each
T ——=€A,+aAg Ag— b(|As|2+]|Ag|2)A,—c|A4?A, pattern and 12 eigenvalues are determined, which must be
dt negative for stability. It is interesting to examine in detail the
—d(|AL2+|As2)A,—e| A, |2A,, eigenvalues in the different structures.
For the roll pattern, the eigenvalues are given by
- _ 2 _ 2
T %:GAeraAe Aq=b(|Agl2+] A2 As—c|Ag|?As o= etafeTbhe camemafembA (10

0:=0, o0g=—2€, 11
—d(|As|?+ A% As—e| Ay %As, ° ° (0

d
07-10— 6( 1- o) duizr €

:
1- . (12)

dAs -
T W:€A6+ aA, As—Db(|A4?+|As|?) Ag—c|Ag|?Ag

The eigenvectors corresponding to the first four eigenvalues
—d(|A?+[A?) As— el Al *Ag, define rhomboids whose borders are at 60° with the rolls.
Expressiong10) show that these rhombs destabilize the roll
where e=(Ra—Rg,)/Ra,=(Ma—Ma.)/Ma, is the relative pattern for e<eg=ca®/(b—c)?. The zero value ofos
distance to the thresholdRa and Ma are the Rayleigh and means that the pattern is indifferent to a translation perpen-



6862 V. REGNIER, P. C. DAUBY, P. PARMENTIER, AND G. LEBON 55
dicular to the rolls. The eigenvalugg corresponds to a per- @ ®

turbation by the roll itself and its value shows that no sub- 4 [*=01 , R 4 [o=05 R
critical convection is possible. The planforms f@§_,, are '
rolls at 30° or 150° while the eigenvectors i@y, ;,are rolls

at 90°; it is also interesting to notice that, above the threshold
the rolls at 90° are always destabilizing when e.

The g for the hexagonal cells are written as e e
+ © '
01,=0, o3=-3aA], (13 80 =
500 - s
* +2 '
0'4’5: €— aAH - 3CAH y (14) 400 R
« H'S
ge=—2e—aA;, (15 = o
- \ HR
42
T7_10— E_(2d+e)Aﬁ . (16) 100 4 H
C
0 + . ¥ | t
The o, and o, zero eigenvalues are a consequence of the 0 200 400 600 800 1000 1200
translation invariance and the corresponding eigenvectors are Ra

rhomboids made up by 2 rolls parallel to the sides of the . ] ) .
hexagons but out of phase by half a roll width with respectto  FIG- 2. Results of the stability analysis for100, Bi=0.5; (a)
the rolls constituting the hexagons. The third eigenvalue &"d (D) are the bifurcation diagrams correspondingate 0.1 and
always negative for a stable hexagonal pattern, which mearf’ézo'S’ respeptlvely; s_olld and dashed lines ch_aractenze stable and
that the corresponding pattern is never destabilizing for th nstable solutiongc) gives the stable patterns in the Ra-Ma plane
hex ns. Note that thi ttern consists of a latti f IC, H*, H™, R, andS mean conductive solution, upflowing hexa-
exago .S' ote 'a S pa .e consists of a latlice o equgf]ons, downflowing hexagons, rolls, and squares, respectively
lateral triangles with alternatively upwards and downwards
motion; the corresponding convective cells consist of some
kind of hexagonal cells. The eigenvectors & s are rhom-
boids made up of two constitutive rolls of the hexagons with
amplitudes of opposite sign. They are destabilizing &or

>eH1=a2(b+ 2c)/(b—c)?. The value ofog allows one to

determine the limite,= —a?/4(2b+ c) of the subcritical do-
main, which is defined as theinterval[ €.,0] in which hex-

agonal cells may appear under the linear threshold. The lagfere Rg and Mg are two arbitrary constants. It is easy to
eigenvaluesr;_,, correspond to rolls with axes at 90° with g4\ that) is proportional to the temperature difference
the borders of the hexagons. These rolls are destabilizing fCtr)\:M—lK—l(,yMaald_’_pgaTRaglda)AT. see notation in
_ _ 12 _ _ 2 : ’

€~€y,=—a (2d+e)((?d+e 2b—c)®. We will use the [21]] while o depends on the fluid properties and the depth
symbol e for the minimum value ofeH1 and €y, SO that  of the layer[ a=(1+ Ragy/Maogpasz)’l]. Figures 2a)
hexagons are always unstable for ¢y . and 2b) show two bifurcation diagrams corresponding to a

For the square solution, the eigenvalues are given by thin (e=0.1) and a thicker 4=0.5) fluid layer, respec-
tively. The values of the coefficients of the corresponding
Landau equations are given in Table I. In Figa)2 we ob-

As an example, the results of the stability analysis for
Pr=100, Bi=0.5 are presented in Fig. 2. For completeness,
let us recall the definition of the parametergndX in terms

of the Rayleigh and Marangoni numbers:

Ra=Raga\, Ma=May(l—a)\, (20

o1_s=e+aA;—(b+d)AZ, o5 g=e—aA,—(b+d)AZ

17 serve that rolls are never stable becagrse. It is also worth

og=2e(e—c)/(e+c), o10=-2e, (18) TABLE I. The critical wave number, Marangoni and Rayleigh
numbers as well as the Landau coefficients for @jjare given for

01117~0. (19 two values ofa. The Prandtl and Biot numbers are given by Pr

=100, Bi=0.5. The normalization condition for the linear eigen-

The first 8 eigenvalues correspond to rhomboids with S'de%odes is a temperature equal to one at the upper free surface.

not parallel to the sides of the square. Expressiadsshow
that these rhomboids destabilize the square patternefor

a=0.1 a=0.5
<es=a’(cte)/(b+d—c—e)% The perturbation corre-
sponding taog is a square, which is spatially out of phase by Kc 2.1379 2.1476
half a square width; moreover, it follows from expressionMa. 88.060 47.148
o9=2e€(e—c)/(e+c) that supercritical squares are unstableRga, 82.226 396.22
for e>c. As it was shown previously that supercritical rolls = 0.13510 0.13032
are unstable foc>e, it is deduced that squares and rolls area 1.9790 1.0313
never simultaneously stable. The negative value gfindi- b 44.999 31.835
cates that no subcritical squares can be observed; the eigan- 34.852 24.705
vector is the square itself. Finally, the two zero eigenvaluesgl 56.686 42.679
011 170riginate in the translation invariance; the eigenvectors 31.832 31.442

are the rolls constituting the square cells.
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stressing that a hysteresis loop appears between hexagor

convection and a square pattern. In Figb)2 squares are
never stable and rolls appear fer-eg. In both cases, the

stable hexagonal patterns are characterized by upflow in th

center of the cells because coefficienis positive. Figure
2(c) is a summary of the results for 100, Bi=0.5, what-

ever the value of the thickness of the layer, that is, whatevel

the value ofa. We have drawn in the Ra-Ma plane the dif-

ferent areas corresponding to the different stable convective
patterns. Recall that in such a picture, a progressive heatin

is described by a motion along a straight line passing throug
the origin. Moreover, small thicknesséise., small ) are

I‘ 1

represented by small angles between the straight line and th

vertical Ma axis while thicker layers correspond to more
horizontal heating lines. In this figure and in the following,
C, H", H™, R, andS indicate the stable areas for conduc-
tive solution, upflow or downflow hexagons, rolls, and

€

0

squares, respectively. The following comments can be mad:

about Fig. 2c). One of the most important results is that

20

square structures will not be observed in thick fluid layers

while these may appear in thin layers with small values.of

In contrast, rolls are observable only for rather large thick- |

15 +

10

nesses. The border separating the roll and square regions is
straight line passing through the origin and that correspond: s

to a critical valuea,, that is a critical thickness of the fluid
layer. Thisa, value is defined by the equality of the Landau

0

coefficientse andc. It is also seen that stable squares are
merging at a distance from threshold much smaller than thau

for rolls: indeed the purél* area is quite thinner for smadl
than for largea. Note eventually that the subcritical hexago-
nal convection domain cannot be seen on the picture owin
to its smallness.

IV. INFLUENCE OF THE PRANDTL
AND BIOT NUMBERS

)
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FIG. 3. Stable solutions as functions effor Pr=100 and for
8ifferent value of the Biot number. Fdb) and(c), closeups of the
€ axis are provided on the right.

ticular, we have studied the case=F0.01. The correspond-
ing figures will not be given here because these are qualita-
tively similar to the pictures in Fig. 3. Two main differences
In this section, we would like to discuss further the resultsshould be mentioned, however. First, recall that all stable

when the Prandtl or the Biot number is changed. Rather thaRexagons are always in this case downflowing hexagons; i.e.,
drawing diagrams in the Ra-Ma plane, we present the resulte motion is downwards in the center of the convective
as functions ofx. We consider first different values of Bi for cells. This is well known and will not be discussed further
Pr=100. This Prandtl number can be considered as 81321 The second difference is that there exists no lower
“large” Prandtl number, which is typical of silicone oils |imit for the Biot number under which square cells are never

used in many experiments. In particular, the fluid used in thg)pserved. In fact. the behavior described by Fig) & not
experiments of Nitschke and The@2] was characterized by - ohserved for small Prandtl number fluids. The typical situa-

Pr=100. The main results are represented in Figa-3(b). ons are in this case either Fig(i8 or Fig. 3c), with only

[
Recall first that only upflowing hexagons can be observe(g e . . TR .
) ) . uantitative difference&he different transition lines are dis-
with such large P{21]. For small Biot numbers, Fig.(8) |{:\C€d in the pictune

shows that squares are never predicted. It can be shown tHA .

squares cannot appear for<0.28, for any Prandtl number A summary OT the re_sults_whe_:n the B'.Ot a_nd Prandl num-

larger than Isee below. For larger Biot numbergFigs. 3b) bers are varied is provided in Fig. 4. This picture represents
dhe critical a; versus the Prandtl number, for several values

and 3c)] a critical o, appears that separates regions wher , X
rolls or squares are stable. Further remarks are in order abofif the Biot number. The region above each curve corre-
these two pictures. First, one notices that dor a, the re- sponds to stable rolls while stable square convective cells are

gion H* where only hexagons can be observed is muckpbse'rved under a curve. For small Pr, squares are always

smaller than on the right-hand side @f. Second, it is seen possible, at any value of Biot number larger than or equal to

that the transition to pure square Convect(amas) occurs 0. Moreover, it is noticed thaﬁ(c decreases with Bi. On the

for a very large distance from threshold wher=Ri while a  other hand, for large Prandtl numbers, the cuaedisap-

new line allows a transition nearer to the threshold for smalPpears when B 0.28, which means that only rolls are stable

a when Bi= 2. far from the threshold in this case. In addition, it is seen that
We have also examined convection in fluids with a verythe curvea. is more sensitive to Bi for large Pr than for

small Prandtl number such as mercury, for instance. In parsmall Pr. So it is necessary to know precisely the value of the
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FIG. 4. Critical valuea, of parametera as a function of the FIG. 5. Stable convective structures as functions of the Biot
Prandtl number and for different Biot numbers. Rolls or squares ar@gumber for «=0.044 d=1.55 mm) and P#100, which corre-
stable far from the threshold far respectively above and below spond to the experiments of Nitschke and Thigd. The shaded
each curve. area defines the experimental threshold to pure square convection.

Biot number to determine the transition to square convectiofi25] for pure Marangoni convection. Their predictions about
in this case. Note also that there exists a region in the neighhe transition to square convection are also in good qualita-
borhood of P+ 0.3 where squares cannot be found, whatevetive agreement with the experiments but the results are not
Bi. As a final remark about Fig. 4, let us mention that whencompletely satisfactory from a quantitative point of view.
the Biot number is increased above=R, the curvesa,
merge into one another since a saturation effect appears. V. CONCLUSION

It is now interesting to compare our model with the ex-
periments of Nitschke and Theg22]. In these experiments,
the Prandtl number is equal to 100 and the thickness of th
fluid is equal tod=1.55 mm. It is then easy to estimate
precisely the value of. From the material properties of the

known _that_ the_ Biot condition u:_;ed at_the top surface is aMhat the appearance of square cells is mainly due to capillary
approximation introduced to avoid solving the complete CoN<e ot ang therefore will be observed in thin layers. Typi-

servation equations in the gas lying above the fluid layer. | ally, squares will never be found far larger than 0.6see

a linear analysis which tgkes into_account the t(_amperaturgig. 4), which corresponds to a thickness of the order of 1
perturbation in the gas, this resolution can be carried out an(dlm for’ many fluids(silicone oils, mercury, ethanol, glyc-

an accurate vglue for Bi can be evaluated. It is easy to Sho\@rol). It is also shown that the Biot number must be larger
[27] that, in this context, than 0.28 for squares to be observed in large Prandtl number
N K fluids. When Pr is quite small, squares are possible whatever
Bj=_%_ - (21)  the value of the Biot number. When the Prandtl number is
Ay tanh(kdgad close to 0.3, only rolls appear. Note also that the areas where
only hexagons are stable are quite smaller wheha than
for thicker fluid layers. It is also important to stress that

qualitative agreement with the experiments of Nitschke and

the gas layer, whilk is the wave number. For the experi- Th ; ; . -
4 o . » ess[22] is achieved concerning the transition to square
ments of Nitschke and Thegad], this “linear Biot number cells. However, the comparison showed the difficulty in de-

is equal to 0.44. Of course this value for Bi cannot strictly befining accurately the Biot number in the nonlinear regime.
used in the nonlinear regime for which this parameter is not

clearly defined. For these reasons, we give in Fig. 5 the dif-
ferent stable patterns versus the Biot number for the values
of @ and Pr corresponding to the experiments of Nitschke This text presents research results of the Belgian Interuni-
and Thess. The shaded area in this picture represents thersity Poles of Attraction(P.A.l. No. 21 initiated by the
transition to square patterns as observed experimentally. It Belgian State, Prime Minister's Office, Science Policy Pro-
seen that agreement with experimental data is achieved lyramming. The scientific responsibility is assumed by its au-
taking a Biot number equal to about 1.6, which is ratherthors. Partial support from the European Community under
different from the linear value 0.44. Note finally that, a the- Contract No. ERB-CHRX-CT94-0481 is also acknowledged.
oretical work including a complete description of the dynam-It is a pleasure to thank Professor J.-C. Legros and his group
ics of the upper gas layer was performed by Gologiral.  (Brussels Universityfor interesting discussions.

The occurrence of square convective cells in a fluid layer
heated from below(Benard-Marangoni problejnhas been
&xamined. The mathematical analysis is based on Landau
amplitude equations, which were deduced from the general
Boussinesq equations. The main conclusions are the follow-

In this formula, \ g5 and Ay represent the conductivities of
the gas and the fluiddy,sis the dimensionless thickness of
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